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SUMMARY

In the field experiments the effects of spatial variability iniiate the estimate of expe-
rimental error. As a result these effects can mask real treatment effects. The main
problem considered in the paper is an improvement of the statistical analysis by using
additional information about soil fertility trends and possible competitive interference
between neighbouring plots. The basis of the consideration were the data from the
field experiment with pea arranged as the balanced lattice design with 25 treatments.
Among the statistical methods used were: ANOVA for completely randomized de-
sign, randomized block design and balanced incomplete block design and ANCOVA.
Kriging and Papadakis’ nearest neighbour analysis were used to calculate the con-
comitant variables connected with the soil characteristics (pH and P, K, Mg) and
interplot competition. To compare different statistical methods the relative efficiency
was established. Kriging applied for yield analysis and nearest neighbour analysis ap-
plied for plant height analysis significantly reduced the experimental error. It was
stated that the methods can be good supplemental tools in improving the evaluation
of treatments in breeding trials with pea.

KEY WORDS: pea, block design, incomplete block design, ANOVA, ANCOVA, nearest
neighbour analysis, geostatistics, kriging.

1. Introduction and objectives

Plant breeders, agronomists and soil scientists conduct thousands of field experiments
annually to determine which variety, fertilizer rates or management techniques will
optimise crop yield or other agriculturally important plant characteristics. Very often
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treatment effects in these experiments are not significant despite distinctive differences
between variants or levels of the treatment.

A major source of non-significance may be spatial correlation between closely
spaced plots. This correlation is due to soil fertility trends and possible competi-
tive interference between neighbouring plots. As a result, the reasons can mask real
treatment effects.

The effects of spatial variability, especially those atributed to soil heterogeneity,
inflate the estimate of experimental error. To reduce the adverse effects of spatial
variability on the estimation of the experimental error one can select the appropriate
experimental design (blocking, randomization) or improve statistical technique of data
elaboration by much sophisticated methods such as the nearest neighbour analysis or
geostatistical approach.

The objectives of the study were:

— to evaluate the extent and pattern of spatial variability of soil pH and available
macronutrients within the experimental field,

— to discuss some methods of statistical analysis which account for spatially
variable soil properties and interplot interference between pea forms of a different
growth type,

- to compare efficiency of different statistical methods of data evaluation.

2. Material and methods

The basis of the consideration will be the data from a breeding experiment with
pea. The experimental material consisted of 25 pea forms of different growth types,
including 15 original cultivars and 10 multipodded strains bred at the Department
of Plant Breeding and Seed Production of Olsztyn University of Agriculture and
Technology.

The balanced lattice design was arranged in three experimental strips (Fig. 1).
Each of the six replications (two on each strip) consisted of five incomplete blocks
and each of the incomplete blocks contained five plots. Each plot of size 4.5 m? had
5 rows, 3 m long, spaced by 0.3 m.

Soil properties related to its fertility (pH and available macronutrients P, K, Mg)
were measured before laying out the experiment. Single mesh of the sampling grid was
4 by 8 meters. There were totally 72 sampling points for the whole experimental area
under two experiments (pea and faba bean). Besides, mean plant height calculated
from a sample of 25 plants/plot and yield /plot were measured.
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Figure 1. A part of sampling grid of soil properties within pea experiment and layout
of the experiement

For the three points across a diagonal of each plot the values of soil pH and
available macronutrients P, K and Mg were predicted by kriging. These predictions
were then averaged to one observation per plot.

3. Statistical methods

3.1. Kriging

Kriging is a method of spatial prediction that can be used for soil and agricultural
properties. It is a form of weighted local averaging. It is optimal in the sense that
it provides unbiased and minimum variance estimates of values at unrecorded places.
The variance of these estimates can also be computed. It is worth noting that there
are several other interpolation methods such as linear interpolation, inverse distance,
least squares polynomials, etc., but they are often theoretically unsatisfactory. They
may give biased interpolation, they provide no estimate of the error of interpolation,
nor do they attempt to minimalize that error.

Kriging is based on the theory of regionalized variables developed by Matheron
(1963, 1971) and Krige (1966). One who wishes to study geostatistical methods in
depth can use, for example, the books by Journel and Huijbregts (1978) (mining) and
Webster and Oliver (1990) (pedology).

The first stage in kriging is the measurement of spatial variation in a property of
interest. This measure is called a semivariance. Estimates of semivariances are then
used to determine the weights applied to the data when computing the averages for
predicted points and are presented in the kriging equations (i.e. Golaszewski, 1997).

Consider a transect along which observations have been made at regular intervals
to give values 2(¢), ¢ = 1,2, .., N. Then, the relation between pairs of points, h interval
apart, can be expressed as the variance of the differences between all such pairs.
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So, the per-observation variance is half this which gives

1) = gvarlz(@) - 26+ ). (1)

The distance & is called the lag, and it is any integral multiple of the sampling
interval. The scheme (Fig. 2) shows the lagged comparisons along a single transect
when all sampling points are present (a) and when there are missing points (b).

For example, the estimate of semivariance for a single transect when A =1 is

) = . \
W =gn5-p ; [2(d) — 2(i + 1) (2)
@ lag h
.Q./\/\/\/\/\/\. lag 1

<L

® [ [ [ ] L J

.____9 ] =3 £ ©® @ ® ® o fag 3
®)
/\‘. o ./\‘./\‘. o e lagl

/—\ lag3

[ (0] [ ] [ J ® o [ J

Figure 2. The lagged comparisons for calculating semivariances when (a) all data
are present and (b) there are missing data
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The general form of this equation is

1 N(h)
A(h) = O] Z [2(1) — 2(i + h)]2 fori=1,2,.., N(h), (3)

where N(h) is the number of observation pairs {z(i), 2(i + h)} with a distance h.
These equations refer to the single transect but the generalization of that formula to
the two-dimensional area is quite straightforward.

The semivariance measures the similarity, on average, between points a given
distance h apart. The more alike are the points, the smaller is y(h), and vice versa.

As above, v depends on h, and the function relating the two is known as the semi-
variogram. Soil varies continuously in space, and so semivariograms of soil properties
and other agriculturally important traits depending on soil fertility (like yield) are
continuous functions. They are estimates and as such are subject to error. They can
be joined by straight lines or curves to give intermediate values, but their distribution
is inevitably irregular. Nevertheless, in most cases it is possible to fit simple function
to them. Generally, as can be noted from many papers related to the topic, the two
models of semivariograms: linear and spherical are appropriate for the vast majority
of agricultural studies. The model of spherical semivariogram and relating equations
are presented in Figure 3.

o

Figure 3. Theoretical model of spherical variogram

The semivariogram has certain important characteristics:

(i) it shows the nature of the geographic variation in the property of interest,

(ii) it is needed to provide kriged estimates at previously unrecorded points.

In most instances (k) increases with increasing h to a maximum, approximately
the variance of the data.
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The distance a is known as the range and it is assumed that points closer than the
range are spatially dependent; points further apart bear no relation to one another.

The intercept Cp, when h = 0, is known as nugget variance and this phenomenon
is known as the nugget effect. The term derives from gold mining in which the inclusion
of a gold nugget in a narrow core sample is possible by chance. Practically, the nugget
effect embraces fluctuation of the property that occurs over distances much shorter
than the sampling interval and the measurement errors, and limits the precision of
interpolation.

The component C represents the range of variance due to spatial dependence in
the data. The sum of the nugget variance Cy and the component C' is known as a sill,
the value at which the variance is stabilising.

3.2. Other statistical methods

Among the analytical methods used, beside descriptive statistics, the analyses of
variance and covariance were applied. ANOVA and ANCOVA are well known so
here they are presented briefly, from the point of view of their implication for spatial
variability and a possibility of reducing the experimental error which leads to increased
experiment precision.

For a completely randomized design (CRD) all spatial variability fully weights
down the experimental error. A randomized complete block design (RBD) enables
to control the total spatial variability connected with different fertility of blocks.
But it does not take into account the gradient or the periodicity of soil fertility and
works well when the number of treatments per block is not too large. For numerous
treatments the reduction of experimental error can be accomplished by the joining of
experimental units in incomplete blocks containing only a portion of the treatments;
here the balanced incomplete block design (BIBD) was applied. In that case blocking
of plots in groups smaller than a complete replication eliminates soil heterogeneity to
a greater extent than RBD.

Further reduction of experimental error and an increase in experiment precision
can be accomplished by the use of accessory observations in the analysis of covariance.
In the presented study, two different sets of data were used as the concomitant varia-
bles.

The first set was calculated according to Papadakis’s nearest-neighbour first dif-
ferences. Essentially, this technique involves subtracting the mean treatment yield
from the yield of each plot and subsequently using the average of the residual yields
of adjacent plots as the concomitant variable in the analysis of covariance. The itera-
tive approach suggested by Bartlett (1978) was applied. The iteration was continued
until the nearest-neighbour local trends for each treatment averaged to zero.
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Wilkinson et al. (1983) discussed some limitations of the iterated nearest-neigh-
bour analysis. These include loss of efficiency due to yield correction with the treat-
ments means, and upward bias in the treatment F-ratio. However, these limitations
are usually not significant unless there are substantial non-linear trend effects in the
experiment.

The second set of data, as mentioned earlier, was calculated by kriging and
consisted of covariate or covariates describing soil fertility. The concomitant variables
in ANCOVA were: plant height and yield calculated according to NNA and pH, as
well as P05, K20, Mg content and all the four soil properties as single concomitant
variables calculated by kriging.

To compare the two analytical techniques the relative efficiency was established
as follows (Steel and Torrie, 1980):

— Randomized Block Design (RBD) to Completely Randomized Design (CRD)

(r —1)MSR+r(t — 1)MSE

RE = (rt —1)MSE ’ )

(r — number of replications, ¢ — number of treatments, MSR — replication mean
square, M SE — error mean square),
— Balanced Incomplete Block Design (BIBD) to RBD

_ 100[SSB(adj.) + SSE(intrabl.)]
RE = = e 1 MSEef) )

(k — number of treatments per block, SSB(adj.) — adjusted block sum of squares,
SSE(intrabl.) — intrablock error sum of squares, MSE(ef.) — effective error mean
square),

— Nearest Neigbour Analysis (NNA) and Kriging to CRD and RBD

100[MSE.Y]

= : ) (6)
MSE.Y (adj.) [1 + jggg)}((]

RE

(MSE.Y - mean square error of Y, MSE.Y (adj.) — adjusted error mean square of Y,
MST.X — treatment mean square of X, SSE.X — error sum of squares of X).

4. Results

Raw data from sampling points connected with the measurements of soil fertility
accross the whole area under the two experiments are presented in Figure 4. The first
four transects refer to the experimental strips of the experiment with pea. All the
analysed soil properties displayed distinctive variation across experimental field. The
distributions of these characteristics describe soil fertility and their potential impact
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pH ” P05
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Figure 4. Raw data from sampling points within the experimental field for pH and
available macronutrients P, K and Mg (mg/100 g soil)

on plot yields. The final 15 m of the experimental strips with pea were set on the
soil of a higher acidity and lower magnesium content than on the other parts of the
strips. At the same time the phosphorus content on that area reached higher values.
Such results are in accordance with physical properties of the soil (not presented here)
showing that the last part of the transects was set on the lighter soil.

Similar values for means and medians point to symmetric distribution of the
data for the soil properties (Tab. 1). The lack of symmetry could point to possible
trends or outliers. Of the analysed properties, the highest variability was found in
the phosphorus and magnesium content, the lowest — in pH.

Average semivariograms for the soil properties presented in Figure 5 reveal dif-
ferent patterns of spatial dependence. The maximum distance assumed was 40 m,
because estimates of semivariances based on less than 25 comparisons are unstable
and thus they were omitted when fitting the models. The models of semivariograms
fitted were spherical for the pH and phosphorus content and linear for the magnesium
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Table 1. Descriptive statistics for pH and element concentrations (mg/100 g soil)

within the experimental field

50

Specification Min. Max. Mean Median SD (CV%)
pH 50 67 58 58 039 (7)
P,Os 88 366 182 174 563 (31)
K20 9.3 36.6 214 21.2 4.95 (23)
Mg 32 150 91 98  2.88(32)
Y(h) 0.3
025 { PH ¢
* >
0.2 +
0.15 -+ . .
*
0.1 + ¢o .
0.05 4 97 %
0 : | ; ;
0 10 20 30 40 50
h [m]
Y(h3s5 NI15
30 + K0 .
S PN
15 + L ] *
1(5) 1 .
0 : | ;
0 10 20 30 50

h [m]

h [m]

Figure 5. The estimates of semivariograms {(mg/100g soil)?] and the best-fitting
semivariogram function for soil characteristics

content. No spatial dependence was obtained for the potassium content. Parameters
of the models, specified in Table 2, show that the range of spatial dependence was
25 m for pH and 16.1 m for phosphorus. The percentage of the nugget effect in the
total variability constituted merely 3% for pH and 16% for phosphorus content. The
parameters from the semivariogram models were used to predict the values outside

the sampling points for each plot.
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Table 2. Nugget (C)), spatially dependent component (C) and range (a) for average
semivariograms of pH and element concentrations [(mg/100 g soil)?]

Specification (Model)  Cy  C (or slope for linear model) a [m]

pH (spherical) 0.005 0.165 25.0
P05 (spherical) 5.400 24.97 16.1
K20 (pure nugget) - - -
Mg (linear) 0.849 0.255 :

The new maps for the data after kriging for the soil properties are presented in
Figure 6. The earlier suggestions about the distribution of the characteristics did not
change but their spatial patterns are much more visually readable.

Figure 6. Spatial variability of the experimental field (data after kriging) for pH and
available macronutrients P, K and Mg (mg/100 g soil)
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Table 3 contains the mean squares for error from different ANOVAs and ANCO-
VAs as well as the relative efficiency of the methods to CRD and RBD.

For plant height a strong reduction of MSE in relation to the standard methods
(CRD and RBD) was observed for BIBD, followed by NNA and kriging with four soil
properties as a covariate. Efficiency of BIBD was 134% to CRD and 120% to RBD.
Similar results were obtained for NNA, notwithstanding the method was less effec-
tive than BIBD in comparison with RBD (108%). The results confirm the intuitive
guess that for morphological traits, especially when we study such morphologically
differentiated pea forms, the NNA which accounts for possible competition effects of
neighbouring plots can be a good alternative to BIBD.

For yield, the strongest MSE reduction was observed for BIBD to CRD — about
10%, but compared to RBD, the relative efficiency was only 101%. However, practical
importance to analyse the yield seems to lie in the analysis of covariance with the four
properties as a covariate obtained by kriging. The relative efficiency was 102% and

Table 3. Mean square error (M SE) and relative efficiency (RE) for different stati-
stical methods of pea data evaluation

Trait MSE RE (%)
Method CRD RBD CRD RBD

Plant height 231 100
RBD 184 122 100
BIBD 153 134 120
NNA® 174* 168* 132 108
Kriging(pH) 226 179* 102 102
Kriging(P305) 233 175% 99 104
Kriging(K2O) 222% 182 103 100
Kriging(Mg) 229 182 101 100
Kriging (pH, K50, P05, Mg)  215%  176* 107 104

Seed yield 66852 100
RBD 60556 109 100
BIBD 59953 110¢ 101
NNA® 66687 60772 100 98
Kriging(pH) 66020 61065 101 98
Kriging(P20s) 66975 60453 99 100
Kriging(K»0) 67025 57205 99 105
Kriging(Mg) 67077 50894 99 100

Kriging (pH, K20, PoOs, Mg) 65775* 55277+  102¢  106°
* — significance of covariate(s) at 0.05
@ — percentage of MSE reduction
— 2nd jteration (stabilizing of MSE)
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106% to CRD and RBD, respectively. It can be assumed that the four soil properties
determined greatly the soil fertility and productivity. None of the single properties
had a significant effect on pea yield estimation.

5. Conclusions

1. Soil heterogeneity caused by different physical and chemical soil properties
across the experimental field can be a major environmental factor of high variability
of pea traits and may mask real treatment effects in breeding experiments with pea.

2. In a pea experiment when no interplot sowing is applied one ought to ac-
count for some effects of spatial correlation and interplot competition of neighbour
observations.

3. In the evaluation of treatment effects for pea morphological traits the nearest
neighbour analysis can be applied as a supplementary or alternative method to the
standard ones.

4. Spatial approach to results from field breeding experiments makes a good
promise for using geostatistical methods in order to detect real treatment effects
(further studies needed).
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Zastosowanie metod geostatystycznych do analizy wynikéw
dos$wiadczenia hodowlanego z grochem

STRESZCZENIE

Efekty zmiennoéci przestrzennej moga zwigkszaé blad doéwiadczalny i w konsekwen-
cji maskowaé faktyczne efekty obiektowe. W pracy rozwaza sig¢ mozliwosci zmniej-
szenia wielkosci bledu doswiadczalnego dzigki wykorzystaniu dodatkowych informacji
zwigzanych z trendami zyznoéci gleby oraz konkurencyjnym oddzialywaniem miedzy
sgsiednimi poletkami.

Podstawsg rozwazan byly wyniki dodwiadczenia polowego z grochem zalozonego me-
tods kraty kwadratowej zbalansowanej z 25 obiektami. W opisie wynikéw zastoso-
wano rézne metody statystycznej analizy danych, w tym analiz¢ wariancji (ANOVA)
ukladéw catkowicie losowego (CRD), losowanych blokéw (RBD), blokéw niekomplet-
nych (BIBD) oraz analize kowariancji (ANCOVA). Jako zmienne towarzyszace w
analizie kowariancji wykorzystano kwasowo$¢ gleby (pH) i zasobnoét gleby w P, K i
Mg oraz efekty oddzialywan sasiedzkich wyznaczone odpowiednio za pomocg krigingu
oraz metody najblizszego sgsiada (NNA). W celu por6wnania metod wyznaczono ich
efektywnosci wzgledem klasycznych metod analizy dla ukladu calkowicie losowego i
losowanych blokéw.

Stwierdzono, ze kriging zastosowany w ocenie plonu oraz metoda najblizszego
sasiada zastosowana w ocenie wysokoéci roélin istotnie zredukowaly wielkosé¢ bledu
doéwiadczalnego. Zatem, obie te metody moga stanowié dobre uzupelniajace na-
rzedzie statystyczne w ocenie obiektéw w doswiadczeniach hodowlanych z grochem.

SLOWA KLUCZOWE: groch, uklad blokowy, uklad blokéw niekompletnych, ANOVA,
ANCOVA, analiza sgsiedztwa, geostatystyka, kriging.



